Perbandingan Performa Model Data Mining untuk Prediksi Dropout Mahasiwa

نویسندگان

چکیده

Penentuan teknik/model data mining yang tepat pada sebuah kasus sangat penting untuk mendapatkan model baik (tingkat akurat tinggi dan kesesuaiannya dengan masalah dipecahkan). Penelitian ini bertujuan membandingkan performa teknik diterapkan prediksi dropout mahasiswa. Perbandingan dilakukan menggunakan library PyCaret Python melakukan pemodelan 14 / yaitu: Extreme Gradient Boosting, Ada Boost Classifier, Light Boosting Machine, Random Forest Extra Trees Decision Tree K Neighbors Naive Bayes, Ridge Linear Discriminant Analysis, Logistic Regression, SVM - Kernel, Quadratic Analysis. Metrik evaluasi digunakan yaitu Accuracy, AUC, Recall, Precision, F1, Kappa, MCC (Matthews correlation coefficient). Hasil eksperimen menunjukkan bahwa mahasiswa lebih jika dimodelkan berbasis ensemble learner pohon keputusan akurasi mencapai 99%. Pohon memiliki keunggulan dibandingkan lain seperti Kernel Analysis karena ia dapat detil dalam memisahkan ke kedua kelas target. Setelah penyesuaian atribut, pembuangan missing values, parameter tuning, didapatkan hasil mirip dari berbagai sebesar 87%. Perbedaan antar menjadi kecil di saat atribut sedikit.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Students Dropout Forecasting Using Data Mining

Education is the backbone of any country and it is very important to improve the educational strength of the country. There are various methods and challenges on the way, use of technologies like computers, smart rooms, projectors, and eBooks. But these resources are useful only when we know which student needs which type of resource or, in other words, if we are able to predict the results of ...

متن کامل

Student Dropout Analysis with Application of Data Mining Methods

One of the indicators of potential problems in the higher education system may be a large number of student dropouts in the junior years. An analysis of the existing transaction data provides the information on students that will allow the definition of the key processes that have to be adapted in order to enhance the efficiency of studying. To understand better the problem of dropouts, the dat...

متن کامل

An Optimal Model for Medicine Preparation Using Data Mining

Introduction: Lack of financial resources and liquidity are the main problems of hospitals. Pharmacies are one of the sectors that affect the turnover of hospitals and due to lack of forecast for the use and supply of medicines, at the end of the year, encounter over-inventory, large volumes of expired medicines, and sometimes shortage of medicines. Therefore, medicine prediction using availabl...

متن کامل

An Optimal Model for Medicine Preparation Using Data Mining

Introduction: Lack of financial resources and liquidity are the main problems of hospitals. Pharmacies are one of the sectors that affect the turnover of hospitals and due to lack of forecast for the use and supply of medicines, at the end of the year, encounter over-inventory, large volumes of expired medicines, and sometimes shortage of medicines. Therefore, medicine prediction using availabl...

متن کامل

Dropout as data augmentation

Dropout is typically interpreted as bagging a large number of models sharing parameters. We show that using dropout in a network can also be interpreted as a kind of data augmentation in the input space without domain knowledge. We present an approach to projecting the dropout noise within a network back into the input space, thereby generating augmented versions of the training data, and we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Teknologi & Manajemen

سال: 2021

ISSN: ['2808-9995', '1693-2285']

DOI: https://doi.org/10.52330/jtm.v19i2.34